Cyclois Pin Apparatus planetarum Reducer quod est magna mechanica transmissione partes cum parvis volumine, lux pondus, princeps transmissus efficientiam features. Ut accurate describere cyclois formation et genus, nos inducere in circulo intra domain et per inutura hoc conceptu. In domain refert ad tolerantia range internus arcus line, per inertium extra scopum tolerantia elit. Secundum ad divisionem internum et extra in domain, epicycloid defined ut sequitur: EpicCloidei: Rolling in basi circulus et in ore circuli circulus tangentem et per basim circulus est extra cycloidei. Cutting epicycloid: rolling in the round outland and base circle circumscribed form epicycloid (The base circle are rounded outlands)。 In cutting epicycloid: rolling in the base circle of outland and cut inside base circle formation epicycloid (The base circle inside the rounded domain)。 Short of epicycloid: cutting epicycloid forming process, the rolling inside domain with rounded some point trajectory of the relatively fixed; Interficiam intus vel extra cyclois formation processus, volvens et volvens in externis relative certa parte a semita. Longa ECICYCOISID, in contrarium est brevi EpicCloidis, relative certa aliquo puncto ad externos sectionem EpicCloidis peregit in volubilem; In terms of internum sectionem Epicymloid relative certa intra certum punctum in volubilem agri. Brevi epicylloid amplitudine transfigurator Epicymoid Epicymoid notum ut diu. Amplitude exterius cyclois LUFFING gradus coefficientem amplitudine adhibetur ad describere, respective amplitudine coefficientem aut brevis coefficientem. Extra secans epicycloid amplitudine coefficienti definitur ut inclinata virga longitudinem et Ratio Rolling radii. Swinging virga longitudinem refertur ad rotundatis intra domain aut rotundatis a relative fixum punctum ad extremum et circum usque ad spatium centrum circuli. Nam cutting Epicyclois intra, amplitudinem coefficientem, in alia manu, exprimitur ut Rolling radius et Ratio inclinata virga longitudinem.